
Packaging O’Caml Code Using Godiva

Owen Gunden

ogunden@stwing.upenn.edu

William Lovas

wlovas@stwing.upenn.edu

Advised by E Lewis

eclewis@cis.upenn.edu

April 9, 2004

Abstract

The O’Caml programming language is in dire need of a standard package management framework for

reusable code distribution. Godi has been developed to fill this niche, but has not yet attained widespread

popularity due to the complexity involved in Godi package creation. This paper describes Godiva, a

tool which vastly simplifies the process of creating Godi packages.

1 Introduction

The Objective Caml programming language (O’Caml) has experienced explosive growth over the past few
years [4], even though there has never been a standard system for packaging, distributing, and installing
software. It is generally agreed that such a system is necessary to accommodate the growing community and
to facilitate further growth. An emerging project called Godi is beginning to establish itself as the stan-
dard distribution framework for O’Caml packages. Godi presents a simple interface to users for installing,
upgrading, and removing packages, as shown in Figure 1(a).

What is GODI?

Godi (Gerd’s O’Caml Distribution) is a source-based package man-
ager based on the NetBSD pkgsrc framework [10]. To O’Caml
users, Godi presents a simple and easy to use interface for in-
stalling, upgrading, and removing packages. Why source-based?
Any viable O’Caml package management system must be source-
based, for two reasons: (1) library code may only be used with
the exact version of the O’Caml compiler that was used to compile
the library, and (2) in general, code may only be used on the plat-
form for which it was compiled. (Incidentally, the first reason alone
demonstrates the importance of package management — when up-
grading the compiler, all libraries must be recompiled. Imagine the
hassle of upgrading a Godi-less system!) Godi’s use of NetBSD
pkgsrc has allowed it to mature rapidly from an “experiment” not
intended for widespread use in July 2003 [13] to its present status
a viable solution with a small but significant community [14].

Surprisingly, however, Godi has not
received the same enthusiastic response
as O’Caml in general. Why not? Being
based on NetBSD pkgsrc [10], Godi is
a highly flexible package management
system. Unfortunately this flexibility is
not without cost: making packages for
Godi is extraordinarily complex and
unsafe. Traditionally, making a Godi

package entails understanding a lot of
internal Godi and NetBSD details and
writing a significant amount of BSD
Makefile code. Figure 1(b) demon-
strates the problem pictorially — mak-
ing Godi packages is frightfully diffi-
cult! This is the primary reason, we be-
lieve, for Godi’s relatively slow growth
in popularity.

Our work is intended to simplify
Godi package creation. To this end,
we have written a tool called Godiva (Godi Verpacken Assistant) which handles all of the details of Godi

package creation. Packagers provide Godiva with a simple specification for a package, and it then translates

1

the specification into a package that can be installed immediately in the Godi framework. As in Figure 1(c),
software packagers are happy once again.

In this paper, we present in Godiva in detail. Section 2 covers the core of our work: Godiva’s design.
Section 3 discusses techniques used in the current implementation of Godiva. Section 4 presents several case
studies and demonstrates how in each case, Godiva significantly simplifies the problem of Godi package
generation. Section 5 comments on other work related to O’Caml package management or distribution.
Finally, section 6 outlines a few ideas for future work on Godiva.

Godiva has already been released to the community as an open source project so that it can grow and
change with the needs of its users.

2 Design

Godiva acts like a compiler: It takes a high-level human-readable specification and translates it to a low-level
Godi-recognizable data format. Figure 2 illustrates Godiva’s basic design and dataflow, from invocation
to completion. The information about a package goes through the following five phases as it passes through
Godiva:

1. Godiva spec: High level specification of how the software package is put together. This stage may be
skipped by specifying the -camlsyntax flag.

2. O’Caml record: O’Caml data structure representing the specification. Optional components are rep-
resented by O’Caml option datatypes.

3. After semantic analyzer: Error-checked and fully-specified O’Caml data structure.

4. After translator: Translated data, in abstract Godi package format.

5. Godi package: Deposited directly into the Godi build tree.

2.1 User interface

Why the command line?

Godi runs on a wide variety of
platforms, including various fla-
vors of Unix, Mac OS X, Win-
dows (via Cygwin), Linux, etc.
The simplest way to be platform-
independent is to make a com-
mand line tool. Furthermore,
Godiva’s operation is very sim-
ple, so the potential benefits of a
graphical tool are questionable.

Godiva runs at the command line. Its usage is simple:

Usage: godiva [OPTIONS] SPEC GODI_LOCALBASE

-patch <patch> includes the given patch

-filesdir <dir> includes the given hierarchy of files

-replace replaces an old package that is in the way

-camlsyntax use the ocaml syntax (devel only)

The required arguments are the two endpoints of the Godiva dataflow.
SPEC is the specification file to be translated, which is where Godiva

begins processing. GODI LOCALBASE is the location of the Godi instal-
lation into which the final resulting package is to be placed. Using
GODI LOCALBASE allows Godiva to be used with multiple Godi instal-
lations, which is an especially common situation at this early stage in
Godi’s development.

From time to time, a package has files that need to be patched so that it will build under Godi. When
this happens, patches are given at the command line through the -patch option. Patches are given names
like patch-NN-hint, where NN is a number used to indicate the order in which the patches should be applied,
and hint helps tell the system which file needs to be patched. Similarly, if a package needs extra files before
it is built, they can be added with the -filesdir option.

Godiva outputs packages directly into the Godi build directory. Sometimes the user needs to update a
package which is already in the build directory; when this happens it is convenient to have the tool replace

2

GODI. . .

Hello, I'm...

J. R. User

(a) The world according to Godi.

GODI

Hello, I'm...

J. R. Hacker
. . .

DESCR

This pkg is
fun!

BUILDMSG
This pkg is
fun! CONFOPTS

GODI_FOO=1

. . .

BSD Makefile
PACKAGE=fun
VERSION=1.0

.if ${CAMLOPT}
 TARGETS+=all
.endif
 . . .

(b) The rest of the story.

Hello, I'm...

J. R. Hacker

GODIVA

GODIVA spec
Package: fun
Version: 1.0
Revision: 0
. . .

GODI

. . .

DESCR

This pkg is
fun!

BUILDMSG
This pkg is
fun! CONFOPTS

GODI_FOO=1

. . .

BSD Makefile
PACKAGE=fun
VERSION=1.0

.if ${CAMLOPT}
 TARGETS+=all
.endif
 . . .

(c) The world is sweeter with Godiva.

Figure 1: The relationship among Godi, Godiva, and the rest of the world.

3

Frontend

lexer

parser

Backend

semantic
analyzer

translator

outputter

GODIVA spec
Package: fun
Version: 1.0
Revision: 0
. . .

% godiva ...
% godiva -camlsyntax ...

O'Caml record
{
package="foo";
version="1.0";
revision=0;
unpacksto=None
...
}

patches
+

files

GODI Package

 Makefile
 DESCR
 distinfo
 fun.godiva
 patches/
 files/
[CONFOPTS
 BUILDMSG]

Figure 2: Godiva’s components and dataflow.

the old package with the new one, instead of failing with an “already exists” message. The -replace flag is
used to indicate that replacement behavior is desired.

Finally, the frontend to Godiva can be bypassed altogether by using the -camlsyntax flag. This func-
tionality is primarily for developers, and is motivated further in Section 3.3.

2.2 Specification file

Our specification file format is a simple human-readable text description of various important pieces of
information, including the software’s name and version, the location of the source archive, the package’s
dependencies, short and long descriptions, etc. The information included in the specification file has been
motivated by our experiences making a variety of packages. A sample file is shown in Figure 3. For compar-
ison purposes, the corresponding Godi Makefile produced is given in Appendix A.2. Manual generation of
the Makefile is significantly more complex and error-prone than manual generation of our specification file.

2.3 Deployment

A package produced by Godiva is placed directly into the Godi build root specified on the command line.
The following files are included in the Godi package:

4

Package: godi-xml-light

Version: 2.01

Revision: 0

Category: godi

Depends: godi-ocaml (>= 3.06)

Build depends: godi-findlib (>= 0.8.1)

Sources: http://www.phauna.org/~ogunden/code/xml-light2.tar.gz

Homepage: http://tech.motion-twin.com/?&node=28

Maintainer: ogunden@phauna.org

Options: opt

Docfiles: README

Description: A minimal XML parser & printer for OCaml

XML Light is a minimal XML parser & printer for OCaml. It provides functions to

parse an XML document into an OCaml data structure, work with it, and print it

back to an XML document.

Since version 2, XML Light also adds support for DTDs and PCDATA.

.

Figure 3: Specification file for the xml-light package.

• Makefile the BSD Makefile used by Godi

• DESCR the long description of the package
• distinfo checksums, produced by Godi

• package.godiva a copy of the spec file, for ease of maintenance
• patches/ any patches required
• files/ any extra files required

(optional) • CONFOPTS specification of conf opts
(optional) • BUILDMSG documentation of conf opts

After creating the Godi package, the package maintainer synchronizes his local Godi tree with the global
tree, using the subversion revision control system [15]. Godi users may then synchronize their local trees
and install the software with ease using the godi console program.

2.4 Policy

In any source-based package manager, there is inherent tension between imposing restrictions on software
developers and imposing complexity on package maintainers. If developers are unrestricted, packaging their
software can be complicated, since package maintainers must understand and communicate to the packaging
framework all the details of the building and installation process for each individual piece of software. If
packages are too difficult to create, nobody will volunteer to create them. The more restrictions there are
on the developer’s building and installation process, the easier it becomes to package their software.

NetBSD pkgsrc must deal with a wide variety of packages, so it necessarily must place very few restrictions
on developers. Godi inherits pkgsrc’s philosophy. Consequently, packages are difficult to create, and Godi

has not attracted many package maintainers. Godi deals with a much smaller variety of software than pkgsrc,
though, so it is reasonable to move some burden from the package maintainers to the software developers.
By making this change, packages will become easier to create, more people will volunteer to create them,
and Godi will become a more attractive option for package management.

The burden we place on software developers takes the form of a build policy for software. Given a piece

5

of software that adheres to the build policy, a potential package maintainer has merely to write a small
specification with some details about the package and run it through Godiva. Godiva creates a Godi

package which is immediately placed into the Godi tree where it can be used by a Godi user.
The policy is a collection of requirements (“must” rules) and recommendations (“should” rules) that

serve not only to make automatic package creation possible, but also to maximize compatibility with end
users’ expectations. We took great care to keep our policy simple for two reasons: one, so that developers
will be encouraged to adhere to it, and two, so that even if developers do not adhere to it, it will still be easy
for volunteers to patch software to adhere to it. The entire policy is listed in Appendix A.1. (The policy
makes reference to “findlib” [11], which is a piece of software related to package management also written
by Gerd Stolpmann but much earlier than Godi. Findlib handles dependencies related to library linking. It
is not a full package manager, though — it does not record any information about non-linkable files [13], for
example. Nevertheless, it is an important and useful tool and Godi depends on it.)

3 Implementation

3.1 Automatic PLIST generation

What’s wrong with a PLIST?

If a package installs a large number of files, or has
a confusing make install target, it may prove to
be very difficult to create an accurate PLIST. Cre-
ating a PLIST by hand is usually the most diffi-
cult and complex part of making a Godi package.
Having it done automatically means Godiva can
operate on the specification file alone — thus re-
ducing the packager’s workload enormously.

Pkgsrc requires a package to list its installed files in a
“packing list” file called PLIST. Godi inherits this re-
quirement, but in principle, there is no reason the PLIST
file could not be generated automatically just before in-
stallation (the PLIST is used to record which files and
directories should be removed when a package is unin-
stalled). We extended Godi to do just that.

Automatic PLIST generation takes advantage of our
build policy requirement that the make install step
respects the setting of the $(PREFIX) variable. When
software is being built we set $(PREFIX) to the final in-
stallation location of the software, in case the build step
requires knowledge of this final location (for example,
if it needs to know where its configuration file will be installed). However, just before we invoke the make

install step, we set $(PREFIX) to a new, temporary location that is initially empty. Then, we may examine
this location to determine exactly what files a package installs and make note of these in the PLIST. Finally,
we can move the files to their final location and remove the temporary location.

Since the installed files of a package could change from platform to platform or based on user configu-
ration options, we regenerate the PLIST every time a package is installed. In order to distinguish between
packages with a manually generated PLIST and packages with an automatically generated PLIST, we add a
configuration variable to the Godi Makefile, AUTOGENERATE PLIST. Since this variable will not be defined in
old-style packages, we maintain backward compatibility.

3.2 Frontend

The command line options to Godiva are implemented using the Arg module in the O’Caml standard library,
which provides a standard command line syntax and a powerful programming API. For lexing and parsing
the specification files, we generate a tokenizer using lexing states in ocamllex and an LALR parser using
ocamlyacc. The lexer and parser are very careful to return helpful error messages with exact positions when
something is wrong with the syntax of the specification file.

6

3.3 Backend

3.3.1 Components

The backend is made up of three basic components which we call the semantic analyzer, the translator, and
the outputter. The semantic analyzer takes an O’Caml record representing the specification and performs
several checks to ensure that it is correct. For example, the unpacksto field should only contain one
path element, and it should certainly never be something like ‘../../foo.’ The semantic analyzer is also
responsible for filling in defaults for any optional values, such as the make targets for building bytecode and
optimized code, which default to ‘all’ and ‘opt’, respectively. After the specification passes through the
semantic analyzer, it should not contain any semantic errors, and it should be complete.

The second component translates each field of the specification into a string that is suitable for direct
inclusion into one or more files in the resulting Godi package. Often this is a trivial translation; for example
the translation of the package version is accomplished with the following code:

translate_version v = ("VERSION = " ^ v)

At other times the translation is more involved. For example, each conf opt is translated into (1) a line in
the resulting BSD Makefile that sets a default value for the conf opt, (2) one or more lines in the Makefile
for its implementation, (3) a line in CONFOPTS declaring the conf opt, and (4) one or more lines in BUILDMSG

describing it.
The final component receives the specification as a collection of strings from the translator and runs them

through a template engine to create the final set of files making up the Godi package.

3.3.2 Development model

In order to rapidly implement and test new features, it is convenient to be able to skip updating the
frontend of Godiva with new syntax. Adding features to the backend is much less work. To facilitate a
development model in which potential extensions may be first implemented in the backend, Godiva provides
the -camlsyntax option, which allows O‘Caml record syntax to be used for the specification. (Section 4.1.3
contains a complete example of this syntax.) Once the extension has been well tested and its necessity
and form are relatively plain, a concrete syntax is solidified in the frontend. Using this development model
streamlines the implementation of new features.

3.4 Releases

Several versions of Godiva have been released to the community. Godiva is licensed under the GNU
General Public License (Version 2) because it has always intended to be a resource that belongs to the
community. Godiva source code, documentation, news, and other resources can be found at the project
webpage: http://projects.phauna.org/godiva/.

4 Evaluation

In this section, we present several case studies which demonstrate Godiva’s effectiveness at packaging a
variety of software projects.

4.1 SpamOracle

We begin our exploration of Godiva’s merits by packaging a spam filtering program written by Xavier Leroy
called SpamOracle [6].

7

4.1.1 The Source

Downloading and unpacking the source is straightforward, because Xavier has named his tarball
spamoracle-1.4.tar.gz and it extracts to spamoracle-1.4, just as is suggested in the Godiva policy (see
Section A.1). The following line in our specification file sums this up:

Sources: http://pauillac.inria.fr/~xleroy/software/spamoracle-1.4.tar.gz

4.1.2 Observations & Challenges

A glance at the README file reveals that SpamOracle has no dependencies beyond the O’Caml compiler. The
version is clearly 1.4, and this is an application so it belongs in the apps category. Our specification file now
contains all the basics:

Package: apps-spamoracle

Version: 1.4

Revision: 0

Depends: godi-ocaml (>= 3.06)

Build-Depends:

Sources: http://pauillac.inria.fr/~xleroy/software/spamoracle-1.4.tar.gz

Homepage: http://pauillac.inria.fr/~xleroy/software.html#spamoracle

Maintainer: Owen Gunden <ogunden@phauna.org>

Options:

Docfiles: README

Description: Bayesian spam filtering software that works with procmail.

SpamOracle, a.k.a. "Saint Peter", is a tool to help detect and filter away

"spam" (unsolicited commercial e-mail). It proceeds by statistical analysis of

the words that appear in the e-mail, comparing the frequencies of words with

those found in a user-provided corpus of known spam and known legitimate

e-mail. The classification algorithm is based on Bayes’ formula, and is

described in Paul Graham’s paper, A plan for spam.

.

The only tricky part appears to be the three configuration options which are discussed in the README. The
installation instructions read as follows:

Edit the Makefile and change the definitions of the following variables

at the top of the file:

LANGUAGES the languages you’re interested in besides English

CPP how to invoke the C preprocessor

BINDIR where to install the executable

We need to allow the user to specify values for LANGUAGES and CPP — we need conf opts here. Fortunately,
Godiva has support for translating conf opts to make variables. However, this experimental feature is not
supported by the frontend, so we have to make use of -camlsyntax. The O’Caml syntax for conf opts is a
list of records:

{ name = "GODI_SPAMORACLE_LANGUAGES";

default = "";

description = "The languages you’re interested in besides English";

implementation = ‘makevar ("LANGUAGES");

};

{ name = "GODI_SPAMORACLE_CPP";

default = "gcc -E -P \\$$(LANGUAGES) -";

description = "How to invoke the C preprocessor";

8

implementation = ‘makevar ("CPP");

}

The specification of each conf opt has four components.

name is the name of the conf opt as it will be displayed by the Godi interface.

default is the default value; in this case no extra languages and a CPP string copied directly from the
default found in SpamOracle’s Makefile.

description is a string that is displayed near the conf opt when the user is setting its value.

implementation indicates how the conf opt is implemented. In this case, we want to implement both of
our conf opts by overriding the make variables “LANGUAGES” and “CPP,” just as the README told us to
do.

All we have left to deal with is BINDIR, which tells SpamOracle where to install. Since this should be the
same for everyone, we don’t want to bother the user with another conf opt. So we have to patch the Makefile
to set BINDIR to $PREFIX/bin. This tiny patch (patch-00-Makefile) will do:

--- Makefile.old>-------2004-03-24 22:52:41.000000000 -0500

+++ Makefile>---2004-03-24 22:53:04.000000000 -0500

@@ -7,10 +7,10 @@

CPP=gcc -E -P $(LANGUAGES) -

Where to install the binary

-BINDIR=/usr/local/bin

+BINDIR=$(PREFIX)/bin

Where to install the man pages

-MANDIR=/usr/local/man

+MANDIR=$(PREFIX)/man

End of configuration section

(It turns out the README wasn’t telling the whole truth because it never mentioned MANDIR. We noticed this
because we were good package creators and carefully studied how the “make install” target worked.)

4.1.3 Solution

In O’Caml syntax, we now have (saved to spamoracle.godiva.ml):

let spec = {

package = "spamoracle";

version = "1.4";

revision = 0;

category = ‘apps;

depends = [(‘godi, "ocaml", (Some (‘ge, "3.06")))];

build_depends = [];

sources_site = "http://pauillac.inria.fr/~xleroy/software/";

sources_basename = "spamoracle-1.4";

sources_extension = ".tar.gz";

sources_unpacksto = None; (* the default unpacking location is fine *)

homepage = "http://pauillac.inria.fr/~xleroy/software.html#spamoracle";

maintainer = "ogunden@phauna.org";

9

short_desc = "Bayesian spam filtering software that works with procmail.";

long_desc = ("SpamOracle, a.k.a. \"Saint Peter\", is ...");

options = [];

confopts = [

{ name = "GODI_SPAMORACLE_LANGUAGES";

default = "";

description = "The languages you’re interested in besides English";

implementation = ‘makevar ("LANGUAGES");

};

{ name = "GODI_SPAMORACLE_CPP";

default = "gcc -E -P \\$$(LANGUAGES) -";

description = "How to invoke the C preprocessor";

implementation = ‘makevar ("CPP");

}

];

docfiles = ["README"];

all_target = None; (* default target (‘‘make all’’) is fine *)

opt_target = None; (* don’t bother with opt for this package *)

}

We’re done! Now we can run Godiva to finish up. Our Godi installation is at /opt/godi.

% godiva -patch patch-00-Makefile -camlsyntax spamoracle.godiva.ml

This is GODIVA version 0.2.

Parsing spec file..

Using alternate syntax

ocamlfind ocamlc -package godiva -c spamoracle.godiva.ml

No filesdir supplied, skipping

Generating checksums..

Package written to /opt/godi/build/apps/apps-spamoracle.

At this point, our apps-spamoracle package is sitting in our Godi installation. We can install and test it,
then upload it to the Godi repository using subversion.

4.2 Unison

Next we present some brief notes on our experience packaging a much larger piece of software, namely the
Unison file synchronizer primarily written by Benjamin C. Pierce [9].

4.2.1 Routine Work

Like SpamOracle, Unison uses conf opts and requires a relatively minor patch. The details of both of these
will be omitted in the interest of brevity.

4.2.2 What’s New

Unison is distributed in a non-standard way. The distribution archive is named src.tar.gz, but it unpacks
to unison-2.9.20. For such cases, Godiva provides the optional “unpacksto” field. In the O’Caml syntax,
the field is “sources unpacksto” and it uses an option type.

4.2.3 The Solution

Our O’Caml syntax spec file begins like this:

10

let spec = {

package = "unison";

version = "2.9.20";

revision = 0;

category = ‘apps;

depends = [(‘godi, "ocaml", (Some (‘ge, "3.06")))];

build_depends = [];

sources_site = "http://www.cis.upenn.edu/~bcpierce/unison/download/beta-test/unison-2.9.20/";

sources_basename = "src";

sources_extension = ".tar.gz";

sources_unpacksto = Some "unison-2.9.20";

homepage = "http://www.cis.upenn.edu/~bcpierce/unison/";

...

}

Running Godiva on the Unison package works exactly as it did for SpamOracle.

4.3 OcamlConf

We next explore the installation of a library package, OcamlConf, an autoconf-like utility written especially
for O’Caml projects [5].

4.3.1 Routine Work

A small patch is necessary to fix an incompatibility with OcamlConf under Godi. As before, we elide the
details to simplify things — there’s nothing here we haven’t seen before.

4.3.2 What’s New

OcamlConf is a library, so it requires an extra dependency — findlib. Furthermore, it uses a configure

script that takes a prefix argument.

4.3.3 The Solution

This package doesn’t make use of any experimental features, so we can use a normal human-readable spec
file. Here it is:

Package: godi-ocamlconf

Version: 0.3

Revision: 0

Depends: godi-ocaml (>= 3.06), godi-findlib

Build-Depends:

Sources: http://kenn.frap.net/ocamlconf/ocamlconf-0.3.tar.bz2

Homepage: http://kenn.frap.net/ocamlconf/

Maintainer: William Lovas <wlovas@stwing.upenn.edu>

Options: configure[prefix_option="--prefix "]

Docfiles: README, COPYING

Description: A simple O’Caml build tool

[... long description elided ...]

.

The interesting points are the Depends: line and the Options: line.
When we run Godiva on this spec file, it produces a Godi package that installs flawlessly.

11

What’s so different about this as compared to our previous packaging case studies? Not much, from
the Godiva user’s perspective! But under the hood, the generated Makefile has several extra variable
definitions, and Godi has been made aware of all the findlib-installed library files thanks to the automatic
PLIST generation discussed in Section 3.1. All these things are taken care of without the packager ever
having to be aware of them.

4.4 Godiva

4.4.1 Self Hosting

Godiva’s primary mode of distribution is as a
Godi package. This is a bold step that sets a
good example for other new projects, and further
encourages the adoption of Godi.

Of course, Godiva can be used to generate a package for
itself. Because we created Godiva from the ground up,
it was easy to make it adhere strictly to the Godiva pol-
icy. Thus packaging Godiva is extremely simple — no
patches and no camlsyntax features are required. This
demonstrates that if a new piece of code is written and
the author expends a near-negligible amount of energy minding the policy along the way, packaging is trivial.

4.4.2 Updates

Since we frequently release new versions of Godiva as Godi packages, we have to update our old versions.
To facilitate this, Godiva leaves a copy of the original .godiva specification file in every outputted Godi

package. Updating is often as simple as copying the old specification and changing the version number, then
re-running Godiva.

5 Related Work

Our work builds on Godi [12], the emerging standard for O’Caml source code distribution. Godi is a source-
based package management system, like NetBSD pkgsrc [10] and the Gentoo Linux distribution’s Portage
[7] among others. Both pkgsrc and Portage are highly flexible package management systems used on a large
corpus of packages. Godi borrows ideas from both.

Well-tested and widely-used reusable code distribution frameworks exist for the Perl programming lan-
guage and the TEX typesetting language; they are CPAN [2] and CTAN [17], respectively. Many of the
techniques underlying their implementations are specific to their respective target languages, but their rel-
ative ease-of-use inspired much of the philosophy underlying Godiva. Furthermore, their popularity has
given us an provably attainable goal to aim for in our work.

There are a variety of O’Caml projects that help standardize compilation and distribution of source
code. These include OcamlConf [5], a tool for writing Makefile-generating configure scripts in O’Caml;
OCamlMakefile [8], an include-able Makefile that vastly simplifies the Makefile for many types of O’Caml
projects; OCamake [1], an “automatic compiler” for O’Caml that unifies ocamldep (the standard ocaml
module dependency analyzer) with the compilers, ocamlc and ocamlopt; Findlib [11], another tool by Gerd
Stolpmann to standardize the installation of O’Caml libraries; and the Caml Humps [16], a searchable
index of many O’Caml projects available freely on the internet. OcamlConf, OCamlMakefile, and OCamake
provided significant inspiration and guidance while we were delineating the Godiva build policy. Findlib
is an important underlying component of Godi that solves the problem of using a library once it has been
installed. The Caml Humps site contains myriad O’Caml applications and libraries ripe to become test cases
for Godiva — all of our case studies came from the Humps.

The Debian O’Caml Maintainers Task Force [3] is a group of people who have maintained high quality
Debian Linux packages for many O’Caml-related programs. Their experience in package maintenance has
been an invaluable resource for understanding the intricacies of the problem.

12

6 Future work

While Godiva greatly simplifies the creation of packages in its current incarnation, it might be improved in
a few ways.

• Godiva has experimental support for conf opts, but this functionality is accessible only through the
-camlsyntax hook into the backend. As soon as the backend design of conf opts is sufficiently stabilized
and well-understood, we will design a concrete spec file syntax for them and implement lexing and
parsing for this syntax in the frontend.

• The O’Caml compiler suite includes both a bytecode compiler and runtime, and an optimizing native
code compiler. Some packages make an effort to allow the user to select which compiler is used, but the
interface for choosing is not standard and varies widely. Some even let the user install both bytecode
and native versions of the package. Currently, Godiva plays it safe and compiles with whichever
compiler is default in the package’s makefiles.

• The policy of requiring PREFIX to be used for installation is not enforced. One idea which has been
discussed in the Godi community involves wrapping all obvious filesystem modifying utilities to catch
any modifications that are made to files with roots other than PREFIX. While this is not completely
safe, it should catch the vast majority of cases. It may be possible to implement an airtight safety
mechanism as well, but it is currently unclear how such a mechanism would function.

• Godiva has only been tested on x86 hardware running Linux. Since it is 100% O’Caml, it should run
on other platforms with no problems. Testing on other platforms is nonetheless important.

• Godi’s current model for adding packages to the official distribution is to upload via subversion and
modify a few registration files. This could be simplified in a few minor ways.

Perhaps the most important work to do with Godiva is simply to use it. There are hundreds of O’Caml
projects available on the Caml Humps [16] alone. At a rate of just a few minutes per package, attainable
only with the help of Godiva, all of these packages could be added to Godi in a few short hours.

Acknowledgements

We thank E Lewis, our advisor who never let us lose excitement. We also appreciate the help and encourage-
ment we got from Gerd Stolpmann, creator of Godi. Special thanks go to the ASCII character 2, for being
such a good sport in Figure 1. Finally, we are indebted to Benjamin Pierce for the idea to name our tool
“Godiva,” although the acronym (including Verpacken, German for the verb “to pack” or “to package”)
was our own creation.

References

[1] Nicholas Cannasse. OCamake. http://tech.motion-twin.com/html/ocamake.html, 2002–2003.

[2] CPAN. http://www.cpan.org/.

[3] Debian OCaml Maintainers Task Force. http://pkg-ocaml-maint.alioth.debian.org/, February
2004.

[4] Valery A. Khamenya. OCaml mail list activity. http://khamenya.ru/ocaml/activity/, September
2003.

[5] Kenn Knowles. OcamlConf: A simple Ocaml build tool. http://kenn.frap.net/ocamlconf/, 2004.

13

[6] Xavier Leroy. SpamOracle: detection of spam by statistical analysis of e-mail contents. http://

pauillac.inria.fr/~xleroy/software.html#spamoracle.

[7] Bruce A. Lock, Carl Anderson, Sven Vermeulen, and Jorge Paulo. Gentoo Linux Documentation –
Portage Manual. http://www.gentoo.org/doc/en/portage-manual.xml, September 2003.

[8] Markus Mottl. OCamlMakefile. http://www.ai.univie.ac.at/~markus/home/ocaml_sources.html#
OCamlMakefil%e, 1999–2003.

[9] Benjamin C. Pierce. Unison File Synchronizer. http://www.cis.upenn.edu/~bcpierce/unison/

index.html.

[10] pkgsrc: The NetBSD Packages Collection. http://www.netbsd.org/Documentation/software/

packages.html.

[11] Gerd Stolpmann. Findlib. http://www.ocaml-programming.de/programming/findlib.html.

[12] Gerd Stolpmann. GODI. http://www.ocaml-programming.de/programming/godi.html.

[13] Gerd Stolpmann. Re: [Caml-list] GODI (was: CTAN/CPAN for Caml (COCAN ...?)). Caml-list
message, archived at http://caml.inria.fr/archives/200307/msg00193.html.

[14] Gerd Stolpmann. Personal communication, October 2003.

[15] subversion Project home. http://subversion.tigris.org/.

[16] The Caml Humps. http://caml.inria.fr/humps/.

[17] Welcome to ctan.org. http://www.ctan.org/.

14

A Appendices

A.1 Build policy

1. Distribution. Source code must come in a compressed (gzip or bzip2) tar archive. The archive should 1

have a name like package-version.tar.gz or package-version.tar.bz2, and it should unpack into
a directory called package-version.

2. Configuration. If a package requires a configuration step, it must be performed by an executable called
configure.

3. Compilation. A package must have one or more ‘make’ targets for building software and documentation.
These should have the following names1:

(required) make all builds bytecode versions of the software.
(optional) make opt builds native code versions of the software.
(optional) make htdoc builds html documentation for the code and places it in doc/html.

Compilation must work with either GNU make or BSD make, at the developer’s option. If compila-
tion requires knowledge of the final location of the software or documentation, it should consult the
$(PREFIX) variable.

4. Installation. A package must have one make target for installation:

(required) make install installs files into $(PREFIX), and/or installs libraries using find-
lib. Libraries must be installed with findlib (an O’Caml tool for
managing libraries and linking).

Note that this target must respect the $(PREFIX) setting, even in the case that it differs from the
$(PREFIX) setting from a previous make invocation.

File locations should follow these rules:

(a) Binaries should be installed in $(PREFIX)/bin.

(b) Man pages should be installed in $(PREFIX)/man/mmann . Man pages must not be compressed.

(c) Info pages should be installed in $(PREFIX)/info.

(d) HTML documentation should be installed in $(PREFIX)/doc/<pkgname>/html.

(e) Other documentation should be installed in $(PREFIX)/doc/<pkgname>.

(f) Other files related to the package should be installed in $(PREFIX)/share/<pkgname>.

A.2 Sample GODI Makefile specification

The following is the Godi Makefile specification for the xml-light package corresponding to the specification
for our package creation tool shown in Figure 3. (Note: the Makefile does not include the long description
of the package — in Godi, this is stored in a separate file.)

.include "../../mk/bsd.prefs.mk"

.include "../../mk/godi.pkg.mk"

VERSION= 2.01

PKGNAME= godi-xml-light-${VERSION}

#PKGREVISION= XXX

DISTNAME= xml-light-${VERSION}

DISTFILES= xml-light-${VERSION}.tar.gz

1With versions 0.02 and earlier of Godiva, this is a “must” rule.

15

CATEGORIES= godi # godi, apps, or conf

MASTER_SITES= http://www.phauna.org/~ogunden/code/

MAINTAINER= ogunden@phauna.org

HOMEPAGE= http://tech.motion-twin.com/?&node=28

COMMENT= A minimal XML parser & printer for OCaml.

AUTOGENERATE_PLIST = yes

PKG := ${PKGNAME:S/-${VERSION}//}

MAKE_FLAGS= PREFIX=${PREFIX}

DEPENDS+= godi-ocaml>=3.06:../../godi/godi-ocaml

BUILD_DEPENDS+= godi-findlib>=0.8.1:../../godi/godi-findlib

Adjust PATH such that version of godi is prepended. This has

only an effect on commands where PATH is explicitly passed (e.g.

configure).

PATH:= ${LOCALBASE}/bin:${PATH}

#HAS_CONFIGURE = yes

If commented out, the configure script will not be called

USE_GMAKE= yes

If commented out, bmake will be used for compilation

CONFIGURE_ENV+= ${BUILD_OCAMLFIND_ENV}

MAKE_ENV+= ${BUILD_OCAMLFIND_ENV}

pre-configure:

. if exists(files)

cp files/* ${WRKSRC}

. endif

pre-install-mkdirs:

. for d in bin lib/ocaml/pkg-lib doc share man etc info sbin include

${_PKG_SILENT}${_PKG_DEBUG}mkdir -p ${PREFIX}/${d}

. endfor

. for n in 1 2 3 4 5 6 7 8 9

${_PKG_SILENT}${_PKG_DEBUG}mkdir -p ${PREFIX}/man/man${n}

. endfor

ALL_TARGET= all

.if ${GODI_HAVE_OCAMLOPT} == "yes"

ALL_TARGET+= opt

.endif

pre-install: pre-install-mkdirs

post-install:

mkdir -p ${PREFIX}/doc/${PKG}

. for DOC in README

16

install ${WRKSRC}/${DOC} ${PREFIX}/doc/${PKG}

. endfor

.include "../../mk/bsd.pkg.mk"

17

